Farren Isaacs

(leave of absence); Asst Prof Mol Cell & Dev Biology

Research Interests

Synthetic Biology; Systems Biology; Genomics; Biotechnology


Research Summary

Advances in high-throughput biology and biotechnology have led to an array of biological insights in medicine, agriculture, evolutionary biology and studies of diverse organisms. Harnessing the potential of species diversity makes biological systems ideal to solve defining challenges, such as producing new drugs to alleviate human disease and generating biologically derived fuels, chemicals and materials to ensure environmental sustainability. In addition to a thorough understanding of biological systems, achieving these goals requires safe and programmable control of biological systems. In this regard, scientists have been primarily using standard recombinant DNA technologies, which have enabled our ability to perform genetics, but on a limited scale. Our ability to measure and modify genetic and biochemical molecules and their interactions in pathways, cells and the environment remains a defining challenge. Thus, “basic enabling technologies” that enhance our ability to engineer biology are needed.

The Isaacs Laboratory is focused on developing foundational cellular and biomolecular engineering technologies to understand and engineer biological systems. Our approach is designed to integrate engineering and evolution through the construction of genes, gene networks and whole genomes alongside quantitative models to gain a better understanding of whole biological systems. In turn, we utilize these insights to design and evolve living cells with new, improved and desired function. We seek to uncover new properties of biological systems and generate new phenotypes with the ultimate goal of applying these insights to address global challenges in medicine, energy supply and the environment.


Selected Publications

  • Isaacs FJ*, Carr PA*, Wang HH*, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM. (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333(6040):348-53. PMID: 21764749.
  • Wang HH*, Isaacs FJ*, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257):894-8.
  • Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA Synthetic Biology. Nature Biotechnology, 24:545-554.
  • Isaacs FJ, Dwyer DJ, Ding C, Pervouchine D, Cantor C and Collins JJ (2004) Engineered Riboregulators Enable Post-Transcriptional Control of Gene Expression. Nature Biotechnology, 22: 841-847.
  • Isaacs FJ*, Hasty J*, Cantor CR, Collins JJ (2003) Prediction and Measurement of an Autoregulatory Genetic Module. Proceedings of the National Academy of Sciences USA, 100:7714-7719.

Edit Profile