We’ve narrowed the field to three B Idol finalists, and only one will go on to be our next mascot. Will it be Skrew, Bee, or the Pipelves? We’ll announce the winner in 2005! In the meantime, enjoy our latest jam-packed issue. We’ve got graphs. We’ve got pics. We’ve got stories, essays, reports, awards, opinions, and your hilarious entries to the always bizarre B contest. Enjoy!

The New Recruits
An Investigative Report
By C. Mendenhall

The 1st years are here! The beginning of the school year is always exciting for old and new students alike. You want to learn more about your classmates….which ones have the same interests, goals, hobbies, etc., as you do. You want to tell them Who You Are. It’s a worthwhile goal, but sorry, B Magazine can’t help you with that. Try going to happy hour more often. But if you want to find out Who They Are, here is a summary of their statistics and some extraneous facts. The rest, however, is up to you.

These 80 newbies were hand picked with loving care from a pool of 914 applicants (the second largest applicant pool ever). They hail from all over the world, with representatives from USA (of course), as well as China, Colombia, Germany, Jamaica, Korea, Malaysia, Portugal, Romania, Singapore, and Turkey.

The most popular track is MCGD, which has 31 students or a whopping 39% of the class. Next in line is MB&B, with 26%, or 21 members. Neuroscience comes in third with 8 students, and Immunology and Pharmacology and Molecular Medicine each have 5. Microbiology and Computational Biology and Bioinformatics each attracted 4 students, and Physiology and Integrative Medical Biology rounds out the class with 2.

The average age of continued on page 3
OPEN ACCESS: The Quiet Revolution in Scientific Publishing

BY M. SERINGHAUS

Subscription costs for academic journals have risen drastically over the past twenty years, and the sharpest increases have been in the areas of science, technology and medicine. According to a study by the Association of Research Libraries, academic institutions now spend three times as much as they did in 1986, for fewer serial titles. Publishers are free to increase prices in this manner because demand for their titles is largely inelastic: scientists don’t normally consider journal pricing when deciding where to submit their work, and competition is all but nonexistent – if you need an article published in Cell, a subscription to Nature is of no use. Schools and libraries must buy any journal their researchers require; and some publishers exploit this fact by hiking prices to unreasonable levels.

These price increases are troubling for two reasons.

The most grievous problem is the inability of the taxpaying public to access the bulk of the research they finance. True open access to the literature would bring authoritative, peer-reviewed science to any interested patient, student or physician in America and beyond. This is a crucial issue and one deserving of discussion, but falls beyond the scope of this commentary.

Second – and of most immediate interest to the scientific community – rising costs threaten our own access to the literature. Remember the boycott of Cell Press, initiated last fall by two UCSF scientists? The prohibitive fees charged by publishing giant Elsevier left researchers at one UC campus without electronic access to Cell Press journals. Peter Walter and Keith Yamamoto implored fellow scientists to shun Cell Press journals, resign from their editorial boards and direct manuscripts elsewhere. The e-mail campaign was effective in speeding negotiations to restore e-access to the affected UC campus; though since Cell continues to flourish, it’s safe to assume the embargo did no more to Elsevier than perhaps bruise its pride. What it did do, however, was shine the harsh spotlight of public interest on the academic publishing system; and this fifteen minutes of fame was about fourteen more than its opponents needed to make the case for open access into a national debate.

By now, you’ve probably heard of PLoS Biology, the landmark open access journal published online by the Public Library of Science. Publishing in a PLoS journal comes at a price of $1500 per paper, paid by authors and covering publishing expenses; all access to your work thereafter is free. Another open access publisher, BioMed Central (BMC), maintains over one hundred open access titles with publishing costs ranging from $525 to over $1000. This cost to publish is widely cited by opponents of open access as a major failing of the system.

It isn’t. Publication is a logical and final step of academic inquiry – without it, the importance and impact of research is sharply constrained. Publication costs should be paid from grant monies, covered like any other cost of research. Furthermore, a significant number of traditional journals now charge publication fees anyway; for instance, the average PNAS author spends $1700 on page and color charges. The cost of publishing a ten-page paper in Nucleic Acids Research, EMBO Journal, Molecular & Cellular Biology, Journal of Biological Chemistry, Genetics, or Genes and Development ranges from $200 to nearly $1000 – and readers must still pay to access. (PNAS does offer an option wherein you can ‘upgrade’ your article to open access for a $1000 surcharge, bringing their fee closer to $2700 per paper.) The upshot is simple: we’re paying to publish either way, so why tax readers, too?

The straightforward answer is that traditional journals carry the cachet, the prestige: publishing in ‘impact’ titles like Nature, Science or Cell is still considered by many to be a career-making achievement. The citation index of fledgling journals can’t yet compete with the old guard, and tenure review boards are unlikely to be bowled over by your Meisterstück in BMC Bioinformatics. But make no mistake: open access journals enjoy significant support from prominent scientists, publish good work,
and are taken seriously. Open access is not the brainchild of some tree-hugging idealists, but the work of powerhouse scientists, regarded as an issue of import in the highest channels. Indeed, the U.S. government now stands poised to regulate free public access to NIH-funded research through PubMed Central. Watch for developments in early 2005.

The purpose of academic publishing is to record and disseminate scientific results, not to jewel some editor’s crown or line the pockets of corporate giants. Before you submit your next article, consider who benefits from the current publishing scheme and who suffers. Take a moment to examine the journals you’re favoring with your work – explore their policies on author archiving and open access. Scrutinize their fees. Are they a non-profit organization? And here’s a good one – if they’re a corporate publisher, check their stock rating. “High buy” means high profit, inexcusable in this publicly funded field.

And here’s something you might not know: Yale already has institutional publishing agreements with both PLoS and BioMed Central. This means that Yale corresponding authors can publish in PLoS journals at a 50% discount, and publish in any of BMC’s $525 journals completely free of charge. It’s true, I asked the librarians; all the more reason to do the right thing.

Submit your next paper to an open access journal. It’s important, conceptually and practically, for all of us to support the movement toward free and open scientific literature. B

OPEN ACCESS continued from page 2

Recruits continued from page 1

the first year students is 24 and ranges from 21 to 31. The baby of the class was born in June of 1983!! With 38 females and 42 males, the girls have a slight dating advantage. The most common astrological signs are Capricorn and Leo, so if you’re into that kind of thing, the incoming class is comprised of several individuals who are cautious, steadfast and reserved (Capricorn), and others who are willful and strong minded (Leo).

The new students are also a smart bunch. With a combined GRE of over 2050, the B staff is guessing that they’re great conversationalists in addition to being good at math and quite analytical. They’re also very accomplished, with 12 master’s degrees, 3 MDs, and something called a BALEV among them. The average GPA is higher than recent years’ at 3.69 (don’t worry, seasoned B readers, we’re sure it’s just grade inflation).

So, when you’re hanging out at GYPCY and the girl you’re talking to says that she’s a first year Physiology and Integrative Medical Biology student, a Libra, and from Liechtenstein, you’ll know that she’s lying and doesn’t really want to be talking to you. Sadly, nobody from Liechtenstein enrolled this year. But there’s always the class of 2112. B

BBS admissions figures since the inception of the Program

All of the first year Neuroscience students at their welcoming picnic at Lighthouse Point. Photo courtesy of J. Warner.
It was a GREAT year for BBS students! Congratulations to everyone below who recently won fellowships.

1st Year Students
Justin Peacock, MB&B
National Science Foundation

Rafael Rosengarten, MCGD
National Science Foundation

Jia Nee Foo, MCGD
Agency for Science, Technology and Research of Singapore (A*STAR)

Idina Shi, Microbiology
Agency for Science, Technology and Research of Singapore (A*STAR)

Jason Smucny, Neuroscience
John Woodruff Simpson Fellowship

2nd Year Students
Aditya Paul, MB&B
National Science Foundation

Sierra Colavito, Genetics
National Science Foundation and National Defense Science and Engineering Graduate Fellowship

Hillary Selle, Cell Biology
National Science Foundation

Elisabeth Wurtmann, Cell Biology
National Science Foundation

Anna Hagenston, INP
National Science Foundation

Denise Davis, INP
American Psychological Association

Ken Kwan, INP
National Science and Engineering Research Council of Canada (NSERC)

C’mon Get Happy
Random Pics at the Genetics Happy Hour

Photos courtesy of C. Mendenhall

And the Award Goes to...

Looking for Financial Advice?
Thinking About Investing, But Don’t Know How?

Zachary J. Bagdon’s
INDEPENDENT AMERICAN
Call and Start Investing Today
203-777-8768
866-767-3235

Did you know that as little as $50 a month during your PhD could mean $85,000 for your retirement?

FREE RESOURCES AVAILABLE AT www.independentamerican.com

Private Consultations - $145 (Yale Affiliates)
Group Seminars as low as $30 per person
Evening/Weekend Appointments Available
How to Make Your Talk Not Suck - Part III

By A. Sleeper

In our last two articles, we covered the basics of preparing an effective presentation. In this final article, we'll cover some guidelines for delivering your talk. With a carefully prepared talk, a decent amount of practice and some time to collect yourself before you begin, your presentation should flow just fine.

Delivering the Presentation

If you've prepared a logical presentation, chances are your delivery will go smoothly; but sometimes nerves can get in the way. The best thing you can do to boost your confidence in front of an audience is to practice. First practice your talk in private. Segue from each slide to the next with a transition statement that sums up the main point of the slide you just showed and explains a link between it and the next slide. If you are going on to a new, somewhat unrelated topic, just let your audience know. If you have trouble remembering what you want to say during or between slides, make notes to prompt yourself. Be sure that these notes are written neatly and are large enough that you will be able to refer to them quickly as you go along.

As you are practicing the talk, think about questions people might have about your data. For example, why did you choose to run one type of experiment over another, or are there alternate interpretations that you have considered? You don’t necessarily have to address these during the talk, but at least you won't be caught off guard should someone interrupt you with a question about this. You may want to prepare slides with brief explanations of these issues. Place them at the end of your talk, perhaps after a blank slide so that you won’t bring these up by mistake as you finish your talk. If you need to refer to them at any point, they will be there to help you and the audience.

Once you feel comfortable with the flow of the talk, try practicing in front of other people. Delivering the talk to a non-scientist or a scientist from a different field will help you to identify some potentially confusing points in the talk. A friend will let you know if you have any distracting behaviors that you might want to minimize. Also try to practice in front of a lab mate. He or she may be able to help you refine some points and give you an idea of some questions your audience may have during the talk. Finally, studies have shown that recall of material is best when performed in the same environment in which the material was learned. If possible, find a time to practice your talk in the room where you will be presenting, as you may feel more confident on the day of the talk.

When it is time to give the talk, try to get to the room early. Make sure all of your equipment is there and working properly and that the temperature is acceptable. Run through your slides once more to make sure everything is in order. For especially important talks, I bring along emergency copies of my slides on overhead transparencies, just in case. If you’ve never given a talk in this room before, try speaking out loud to get a feel for the room's acoustics and how loud you will need to speak in order to be heard. Remember that sound travels better in an empty room, so be sure to speak a little louder when the audience is there. Have your title slide up and ready when the first person arrives. Bring along some water in case you need it while you are speaking. If you are soft spoken, ask the audience if they are welcome to interrupt if you are speaking. If you haven’t been introduced already, introduce yourself to the audience. Take a deep breath, smile, and begin. If you are using a laser pointer during your talk, be sure to point directly to the area of the slide to which you are referring, not just close by. If your hands are shaking, steady one hand with the other to keep the pointer from trembling on the screen. Have a friend in the audience ready to give you a sign if he thinks you are going too fast. If you already know you tend to speed through your talks, tell the audience at the beginning that they are welcome to interrupt if you are speaking too quickly. Chances are, someone will let you know if you need to slow down.

When you are finished with the talk, it is time to answer questions. Invariably, someone will ask you a question that surprises you. Clarify to ensure you understand the question. If you think you know the answer, go for it. If you just don’t know, it is certainly acceptable to say so. If an audience member makes an important point that you haven’t considered before, don’t feel embarrassed. Just thank them, and make a note of it. When it comes time to write an article, a reviewer may ask you to address the same issue.

The idea of giving a talk may be daunting, especially if you don’t have much experience. By this point in our careers, however, we’ve all had plenty of experience in attending talks, and we’ve seen both good and bad ones. I have outlined some of the basic features I believe are universal to all good talks. Also consider presentations that have been your own favorites in the past. When you prepare to make your next presentation, emulate the features that made an impact on the audience. As you grow more accustomed to delivering talks, the process will become more intuitive, and you may find that you are able not only to teach your audience effectively, but also to entertain.

To receive previous issues of B magazine that contain Parts I and II of this series, please send a request via email to bmail@yale.edu.
ROUTE 28: PAVING THE WAY FOR DIRECT INTERACTION BETWEEN STUDENTS AND PROMINENT RESEARCHERS.

By J. Warner

Forty-five international strangers are broken up into teams of five to compete for one week on a remote island in Bavaria. Is this a new reality series concept? No, it’s a unique approach to bring together leading researchers with young scientists in a collaborative workshop known as the Route28 Summits in Neurobiology. I was fortunate to attend the most recent installment of this meeting in August, where I had one of the most memorable academic, social, and cultural experiences of my life. More on that later...

Route28 was established in 1999 and is organized by Phil Horner, Gerd Kempermann, Georg Kuhn, and Theo Palmer. With the help of family, friends, colleagues, and lab members, these accomplished scientists in stem cell neurobiology have set a new precedent for the academic symposium. The goals of Route28 were evident to all participants. They included an emphasis on creativity, teamwork, scientific integrity, collaboration, and fun. Previous topics have included Adult Neurogenesis and Neuropsychiatric Disorders (2004), (Stem) Cell-based Therapeutic Approaches for Parkinson’s Disease (2002), The ID of Stem Cells (2001) and Therapeutic Potential of Stem Cells (1999). While the focus falls under the broad category of ‘neural stem cells’, the specific topics differ from year to year.

This year’s meeting was held on a small island called Frauen-Insel (translation: Woman Island) at Chiemsee (Lake) in Bavaria (Southern Germany). It took almost 24 hours of travel by car, airplane, subway, train, taxi and boat (in that order) to arrive at this island, whose circumference could be walked in 20 minutes - 10 if you walked fast. Room and board were included in the 100 EURO registration fee ($127 USA), and we were given rooms in a convent that was still populated and run by German nuns.

Why such a remote location? Those of us who were exhausted from traveling wondered the same thing, but it soon became clear that there was a method to this madness. The organizers admitted they had been frustrated with the conventional style of large scientific meetings. We have all experienced this frustration during a one-week symposium when the four talks we are interested in attending are all offered at 10am on Monday. Years of work and research went into designing a new format with: (1) a remote location forcing people to stay at the meeting, (2) financial aid allowing a fair chance for everyone to attend, and (3) a low-key competition to keep the attendees engaged. They even scheduled some time for fun and networking!

The structure of the meeting involved a competition among students to address ‘the challenge’ that was presented on the first day and provided useful formal lectures and informal discussions for background.

The opportunity to brainstorm with bright, enthusiastic peers with diverse scientific training and with unlimited access to the experts reminded me why I was in science in the first place. It is easy to get wrapped up in the pressure to publish and make a name for oneself, but Route28 had another message.”

“It is easy to get wrapped up in the pressure to publish and make a name for oneself, but Route28 had another message.”

The four talks we are interested in attending are all offered at 10am on Monday. Years of work and research went into designing a new format with: (1) a remote location forcing people to stay at the meeting, (2) financial aid allowing a fair chance for everyone to attend, and (3) a low-key competition to keep the attendees engaged. They even scheduled some time for fun and networking!

The structure of the meeting involved a competition among students to address ‘the challenge’ that was presented on the first day and provided useful formal lectures and informal discussions for background.

The opportunity to brainstorm with bright, enthusiastic peers with diverse scientific training and with unlimited access to the experts reminded me why I was in science in the first place. It is easy to get wrapped up in the pressure to publish and make a name for oneself, but Route28 had another message.”

Intrinsic to the design of this meeting, we learned that if we combine our efforts to address complicated questions (e.g. the etiology of major depression) with new and creative techniques, someday someone might actually come up with an answer. Not only was their message something I thought was worth writing about, but the friendships I established after being stranded for a week on a remote island will last throughout my career and lifetime. Is Route28 the first step towards a paradigm shift? I don’t know, but it’s definitely a meeting worth attending.

For more information, visit: http://www.route28.de.
Your PI will mentor you to become an academic star. But have you ever inquired about an “alternative” career outside of academia and received that deer-in-headlights look? Well, there are a lot of stellar investigators doing fantastic science outside of the ivory tower, too. Whether your dream career is in academia or elsewhere, activate your FREE Yale-sponsored membership to the New York Academy of Sciences (NYAS) and begin networking with leading researchers and developing the professional skills that will help you accomplish your goals.

In addition to its renowned scientific symposia, NYAS has created the Science Alliance to provide graduate students and postdocs with professional development programs and a wealth of networking opportunities with peers and key leaders in industry and academia. Monthly career symposia, workshops, and talks will help you hone your skills and knowledge on a variety of topics such as career trends, grant-writing, intellectual property, science writing, and entrepreneurship.

Many of the events are held at the posh NYAS headquarters – a neo-Italian Renaissance mansion on Manhattan’s Upper East Side. Who couldn’t use a good excuse to go to NYC for half a day? But seriously, by attending Science Alliance events, you will be able to approach that PI you’re eyeing for a postdoc, or a senior industry professional, all for the cost of a train ticket.

You don’t have to go into NYC to take advantage of this phenomenal program. The Science Alliance will host at least two programs on the Yale campus this year. For an immediate fix, check out the Science Alliance web portal within the NYAS website (www.nyas.org/sa). This comprehensive site contains job listings, career articles, science news, and a unique Science in the City daily search that lists all searchable, science-related events happening in NYC for a given date. Moreover, eBriefings provide full audio and video coverage of Frontiers in Science meetings, complete with searchable slides and transcripts.

To encourage you to take advantage of this spectacular opportunity, Yale is sponsoring a one-year membership for all science graduate students and postdocs. Simply go to the link (www.nyas.org/yale) and sign-up for your free membership. Join today and get your career off the ground!

Diane Hannemann is a graduate student in MB&B. Ona Bloom is a postdoc in Cell Biology. Together they represent Yale on the NYAS Science Alliance Steering Committee.
Hopelessly Delusional

BY E. ANDERSON

Amidst our concerns over personal achievement and career decisions, every so often an opportunity to pad our CV’s and impress our PI’s springs up. The Graduate Student Assembly’s (GSA) Conference Travel Fund (CTF) accomplishes this and more. Established within the last year by graduate students, CTF provides funds for students to travel to conferences, present their work, and be noticed by the scientific community.

As students in the biosciences, it is of paramount interest to us not only to attend conferences and symposia, but also (if your PI is anything like my own) to submit an abstract and present data at such events as often as possible. It’s on these occasions that the CTF becomes a valuable resource. The CTF provides awards of up to $500 to cover expenses such as travel, accommodations, and conference fees. According to CTF director Emmanuel Raymundo, several key points need to be considered by BBS grad students when applying for a CTF award:

- Only students who have abstracts that have been both submitted AND accepted by a scientific conference/symposium are eligible.
- The availability of a student’s departmental and/or PI’s funds is taken into consideration only when deciding how much money is to be awarded, not whether or not the student should actually receive the award.
- A student need not have passed the qualifying exam to be eligible.

The CTF allows a student to be awarded reimbursement for a conference that has already taken place (there are limits to how far back one can go) or to assist in attending a future conference. An independent panel of students in the GSA will review applications in a blind, peer-reviewed process and will decide whether an application merits an award and how much will be awarded. Information regarding the CTF, as well as an application for a travel award, can be found at http://www.yale.edu/gsa/CTF. For more information, contact emmanuel.raymundo@yale.edu.

Delusional Hope

BY J. KIM

I am writing this on August 31, 2004, one day before classes start. One day before my first class as a graduate student at Yale. This is the time when I still have hope.

Orientation week is great. I’m best friends with everyone in the world. I’ve learned that Yale is the best school ever, and that New Haven is a wonderful city that invented pizza and hamburgers and the wheel. I can’t believe I’m at Yale. Wow, I’m smart. Graduate school is going to be so easy. I think I’ll try to make it out in three years. Four at the latest. I’ll publish dozens of papers in Science and Nature, and maybe find the cure for an exotic disease. I’ll get along wonderfully with my PI and all of my labmates; sometimes we’ll hold hands and skip. After grad school, I’ll be a post-doc for a few months before being offered an academic position at a top university. I’m going to marry rich and have two non-screwed up children and maybe a golden retriever named Sparky. It’s going to be great.

Fine. FINE. It’s not going to happen like that. I’m young, but I’m not quite that naive. Graduate school is not going to be a breeze, and I’m going to have to work very hard to do well. I’m going to spend nights in the lab, develop hand ailments from hours of pipetting, and go blind reading papers. I know too many seasoned grad students to think otherwise.

But right now, on my last night of being a free person, the day before it all begins... I have this weird delusional hope. It really might be perfect. It really might be easy and fun all the way through. I might not get stress-induced ulcers or headaches from lack of sleep, and maybe my research will go smoothly from start to end with no snags at all. On this night, I could potentially be the best scientist in the world. Never mind the first day of class tomorrow, when I find out how stupid I am; never mind September 27 (beginning of rotations), when I find out how incompetent I am; never mind nine years down the road, when I realize I’m still in graduate school. Right now I’m savoring tonight, my night of delusional hope. 8

Hopelessly Delusional

BY SUZIE FOURTHYEAR

It is 4 a.m. on August 31, and I am at the microscope again. I have spent the last six months in a dark, windowless room staring at slides, praying that my experiment finally works. But it doesn’t. Nothing does. It’s hopeless.

Life stinks. And by life I mean work because I don’t do anything else. I thought about taking music lessons, but that would be an hour a week not spent in the lab. I remember my first year when I took classes and did lab rotations. I used to go to the gym, go outside several times a day, attend Thursday night dance parties, and even hit the happy hours. Boy, have things changed since then. Now, I study trivial crap that has no significance in real life whatsoever. My experiments don’t work. My labmates are idiots. My PI hates me and doesn’t think I work enough. I’ll never get published. People keep asking me when I’ll be done, and inside my head I hear this scream; and I know deep down that the answer is sometime in the year 2020. What the heck am I going to when I graduate? If I graduate. My boyfriend dumped me because I didn’t have time to spend with him. He said I loved my rats more than I loved him. (He might be right). Mom stopped leaving messages because I never call her back. I am going to grow old alone in a cold, dark room.

Fine. FINE. It’s not really that bad, but sometimes it feels that way. There have been good times. I just can’t remember them now.

I try to take a step back and acknowledge that it really cannot be this bad. But its 4:15 a.m., and I am wasting my 20’s in a cold, dark room looking at cut-up rat parts. Maybe I am overreacting. Maybe the lack of sleep for the past couple of years has made me a little hypersensitive. Maybe deep down my PI likes me and my committee thinks I am a good scientist. Maybe I will graduate soon and get a job that pays me enough to buy a house before I am 80. Maybe I should think back to when I was a first year. I was so excited to be at Yale - training with the leaders of my field at one of the best institutions in the country. Maybe everything is going to work out just fine. OK, it’s definitely time to go home... before I get hopelessly delusional. 8
Preteens, Jellybeans, and Brains

“Now, before we move on to the activities, why don't we go around the room…. Each of you can introduce yourself and tell us one thing you know about the brain.” We had just made our own introductions – Dilja Krueger, Jennifer Warner, and I, all students in the Interdepartmental Neuroscience Program – and now we awaited the responses from the room full of girls in front of us. Their collective level of knowledge would dictate how the next hour-and-a-half would go.

The three of us had recently been asked to participate in a day camp to inspire 4th through 6th grade girls to pursue an education (and by extension a career) in science or math. Sponsored annually by the Waterbury, Connecticut chapter of the American Association of University Women (AAUW), “Brighten Your Future” features a weeklong series of science- and math-related activities.

The girls extracted DNA from bananas, learned about bones from a chiropractor, played with computers, and were introduced to the fields of Environmental Science and Cryogenics. We were to be the first ever participants to talk to the group about the Neurosciences.

It was not difficult (and was actually quite fun!) to come up with relevant but captivating activities that related to the brain and nervous system. We agreed on three activities. The real challenge was to develop the vocabulary that we would use when describing the physiology behind the phenomena. If we referred to “neurons” as “brain cells,” would they even know anything about cells?

As it turned out, the girls knew a lot about the brain. One of them was even able to recite and locate the lobes of the brain (frontal, temporal, parietal, and occipital), and some even knew about the designations of cerebrum, cerebellum, and brainstem. They were also surprisingly adept at generating hypotheses as we progressed through the “experiments.”

In the first experiment, we explored the chemical and visual senses. The girls worked in pairs and had five flavors of jellybeans each. They also had data sheets for keeping track of the taste sensations they experienced at each stage of the experiment. The subject experienced the first jellybean with eyes and nose wide open. She could both see (e.g., red = cherry, yellow = lemon, etc.) and fully taste the jellybean. The second and third jellybeans were delivered with nose open and eyes closed. The fourth and fifth jellybeans were experienced via the tastebuds alone, the subject’s eyes closed and nose plugged. The experimenter recorded which of the five flavors the subject thought she had been given. Many of the girls were rather comically upset by the fact that they were unable to distinguish the correct bean without smell and sight to aid them, as if they had gotten a question wrong on a test! But they all were able to understand the connection between these systems in guiding their perception of taste.

Next, the students were asked to listen to a list of fifteen words. One of the words was accompanied by an image (“horse”) and another by the text of the word (“teapot”), while other words in the list had been selected based on properties that would make them easier or harder for the girls to remember. For instance, words like “homework” and “student” would be familiar and easily recalled, whereas a word like “genome” might be forgotten because they likely had not heard it before. After the list was completed, they quickly wrote down as many words as could be remembered.

In the debriefing, we talked about such things as primacy and recency and how these relate to long-term and short-term (working) memory.

The last activity was intended to combine sensory, motor, and memory systems. Eight girls each stood in front of a soda can, which, unbeknownst to them, might be either full or completely empty. (The empty cans were drained through a puncture in the bottom of the can.) Several of the other girls were in charge of holding a string up above the cans. At our “go”, the girls were to lift the cans to the level of the string as fast as they could. As expected, the girls lifting empty cans lifted them well above the string, while those lifting full cans were right on target. Why? Because they saw what appeared to be full cans of soda, their brains used prior experiences (with lifting soda cans) to compute precisely how much force would be necessary to lift the can to exactly the level of the string. When in fact the can turned out to be empty, the force applied to lifting the can was greater than necessary, and once they started lifting, they moved too fast to alter that force. The session wrapped up with the unveiling (and eating) of a Jello brain. Was the workshop a success? It was clear that the girls had as much fun as we did. Can we look forward to claiming a part in the early intellectual development of a future Nobel-laureate? I think the message left on the chalkboard at the end of the day sums it up best: “Neuroscience Rules!”
Lifestyles of the Poor and Academic

By J. Warner

What is more cluttered than the mind of a graduate student? Her bench. Even if your space is neat and tidy, we’ll bet that someone close to you has a messy bench. Our mission is to save the sloppy scientists out there - one slob at a time. In the spirit of a successful television series that you might be familiar with, we at B have assembled a team of 5 bench-space specialists to transform one bench from drab to fab. Only two of them actually showed up for the photo shoot, though, since the other three were busy doing experiments...

Neatness 101

A not-so-wise man once said, “If your bench is clean, people will think you’re not doing experiments.” The fab-two have just one thing to say to that: Phooey! A clean bench is a good idea for several reasons. First, a messy bench hinders productivity. Hunting around for reagents slows you down. A neat, organized workspace is efficient and sends a message to your co-workers that says, ‘hey, I have this under control!” And if that is not reason enough to change your filthy ways, think about how you are going to explain losing your radioactive pipet tip under a pile of dirty kimwipes and not noticing for a week. Safety first, fellow scientists! With a crazy academic schedule, it is easy to lose control, but with a few minor adjustments that only took us 20-minutes to assemble, we will transform this BEFORE to a fabulous AFTER.

Mood lighting is not just for the bedroom anymore!

Using a creative combination of FITC and TRITC colored lights to illuminate the benchspace, we create a romantic and familiar illusion of celebration while keeping within our scientific theme. To enhance this illusion, we used three sizes of classic glass beakers to hold tea-light candles. This is an especially good idea for those of you with an eye on that good-looking someone in the neighboring lab. Invite him or her to take a look at your experiment and WOW! You’ll win him over in no time. These votives are stylish, functional, and cost-effective. They only cost us 99-cents!

Coordination is key to productivity.

Whether you are juggling an experiment with your teaching responsibilities or coordinating a kimwipe box with colored lights, it takes a little finesse to get things right. Here we use small light-bulb replicas to decorate the glassware on our bench and light-bulb wrapping paper to decorate a drab kimwipe box. Ribbon accented tube-racks are fabulous and functional- making it easier to tell when your labmate swipes yours.

Flowers are a decorative touch with timeless appeal.

They never go out of fashion and can reflect a variety of moods and meanings. Besides, can...
you think of a better way to make use of a graduated cylinder?

Show off your wild-side!

Finally, a scientist’s true sense of style is reflected in what she uses every day. For this scientist it is her pipetman. For you it might be an electrode or MRI scanner. We chose to highlight the wild-side of this sassy scientist with a designer one-of-a-kind leopard print pipetman. This was a splurge, but totally worth it! We went with the coordinating leopard print labcoat with understated leopard print collar, cuffs, and pockets. If you look great, you’ll graduate faster. (Not really, but we had to say something to get her to model in our coat).

We hope you have enjoyed the debut of 'Science Guy'. While you might prefer a décor that is a tad more practical, we hope we have motivated you to tidy up your space and make it your own. You’re going to spend many days and nights there; they might go a little faster if you have a little fun.

Dilja Krueger, INP, (above) and Jen Warner (left) modeling their fabulous new labcoats and equipment. Special thanks to Maya Davis, Pharmacology, for sacrificing her bench to the cause. Photos courtesy of J. Warner.

Contest continued from page 12

Dylan Burnette, MCDB

The Amazing RACE
Contestants compete for a bevy of cash and prizes in the search for the most elusive of all prey: The 3’ end.

The Real World, Graduate School
Real graduate students get taped doing what they normally do. Sit around playing video games and watching reruns of Dawson’s Creek while complaining about having no money.

Who wants to be a Hughes Lab?
Regis takes over reviewing applications for the Howard Hughes Medical Institute. Picture this: Dramatic lights, dramatic music, and a never ending supply of ties worn with the same color shirt! Is that your final experiment?

Ani Sinha, Microbiology

The Surreal Life
Following the life of a graduate student who gets every experiment to work.

The Hard Life
Following the day in the life of a graduate student, period.

Alice Ly, MCGD Track

Temptation Lab Bench Island
If you were on an island with 13 scientists with seductively HOTT projects/experiments, would you be tempted? An unscripted dramatic series in which grad students and their PIs travel to a world-class facility to test and explore the strength of their protocols, projects, and relationships. Their bond will be tested as they are separated from their partners and introduced to hand-selected bright/eligible PIs and grad students.

Nadya Morales, Microbiology

He’s a Lab Tech!
PI’s go from top to bottom of the science chain. See who will become the best lab tech!

Kristin Patrick, Microbiology

Trading Benches
You and your benchmates exchange pipetmen and spend 2 days screwing up each other’s experiments.

Kaury Eisenman, MB&B Track

PI Punked
After he’s convinced that an independent film maker and small film crew is observing his lab for a documentary on ‘The great scientific minds of our time’ and the day after all his fly strains escape, mate, and swarm his office, your PI arrives to lab to find two Graduate students seemingly dead, one post-doc seriously injured and a smoldering inferno of lost data.
The BUZZ

Yale and Bristol-Myers Squibb celebrated over 30 years of collaboration at a September symposium and reception at Yale. BMS funding helped launch the BBS Program, and a plaque recognizing their contributions was installed outside the BBS office.

The BBS application deadline is December 8, the earliest ever. The main recruiting weekends will be February 4, and 11. The Neuro track will recruit the weekend of the 18th.

Congratulations to Susan Hockfield, former Yale Provost and BBS faculty member, on being selected as MIT's new president.

Paula Estrada de Martín, Cell Biology, defended her thesis on September 28, 2004, and the Governor of CT declared it Paula Estrada de Martín day in her honor.

Ana Pedraza, Cell Bio, and Kausik Si tied the knot on July 9. Congratulations!

Best wishes to Vinny Ideno, Microbiology, who married Tauna Saunders on August 28th.

Kudos to Eric Schmidt and B mag's Jen Warner, both of the INP, who recently announced their engagement.

Congratulations to Betsy Schulman, MCDB, and her husband Glenn (MPH '04) on the birth of Zachary Avi, 5 lbs 9 oz and 18.5 in, on August 15.

Noé Johannes Simons-Delamarre was born on September 18th to Leilia Delamarre, associate research scientist in Cell Biology, and husband Jani Simons.

Amy Chow, Immuno graduate and now postdoc in the same department, and husband Jen welcomed Bethany Ting Chow on July 7.

Charles Boyd, postdoc in Cell Bio, and wife Sara were ecstatic at the arrival of Eleanor Elizabeth Boyd on June 9.

Congratulations to Marisa Dolled-Filhart, Genetics, and her husband Shoham on the August 27 birth of Sapir.

The B magazine

“Science Reality Series” Contest

Part of the great B-yond - a showcase of student creativity

Given how bad reality TV is, some of these entries actually sound interesting by comparison. Congratulations to our winners, who should contact the BBS office for prize information.

1st Place - ‘Pimp My Mouse’

Tim Hand, Immunobiology

Watch every week as the specialists at Jackson Labs revamp your moribund inbred mice with mods for glowing eyes, webbed feet and a fancy racing stripe! Be the envy of your labmates as your mice go from Balb/C to badass!

2nd Place - ‘The Next Great Chump’

Dylan Burnette, MCDB

A group of people enroll in graduate school with the expectation that they will get jobs after they spend their youth getting advanced degrees. What we are not telling them is that there are no jobs! How many will make it and what kind of kind of disasters will befall them when they look for work? Do you want fries with that?

3rd Place - ‘Making the Band’

Rachel Anderson, MB&B

Ten graduate students compete to make the most realistic-looking gel using Photoshop.

Honorable Mention - ‘The Network is Down’

Sierra Colavito, Genetics

10 grad students are stuck in a lab without internet access. Who will crack first?

Other Notable Entries (in random order)

Jess Williamson, MB&B

- Who wants to marry a grad student? No, seriously, who would want to?
- Watch as professors try to lure grad students to seminars and meetings in, Beer Factor.

Rachel Anderson, MB&B

- America’s Next Top Model Organism
- Watch the hottest new model organisms around compete for the top spot in the lab.
- The Sample Life
- A rich, young heiress from an HHMI lab has to spend the summer in a lab without funding.

Rafael Rosengarten, MCGD Track

- It Tastes Like Burning
- The show where contestants have to identify mystery liquids in unmarked flasks using all their senses. Extra points for picking out subtle flavors and seasonings, like the trace amounts of ethidium bromide in a warm flask of 2% agarose.

Sierra Colavito, Genetics

- Life in the Hood
- The true story of a bunch of grad students competing for and sharing time working in the tissue culture hood.

Craig Gibson, C&M Physiology

- Who wants to marry an HHMI?
- Let them do all the hard work, and marry your way into excellent lab space.
- Rotation Survivor
- 3 students are pitted against each other on the same project, but the PI can only afford to support 1.

Nanami Gotoh, Cell Biology

- America’s Top Scientist
- 12 female BBS students compete for the opportunity to appear on the cover of Science, in a fashion spread in B Magazine, and receive a research scholarship. They must master crash courses in catwalks down C-wing, public speaking, lab photo shoots, and undergrad teaching, while completing a rotation-like project.

Charlotte Frank, Microbiology

- Fear Factor: TA Edition
- Graduate students competing for a stipend supplement face a series of mental and physical challenges such as grading lab reports standing up on the night shuttle, playing what’s that smell? (unlit burner? ether left open?) in a crowded undergrad lab, and eating grade grubs (how many in one minute?). Fear cannot be a factor in this winner take all challenge.

More contest entries can be found on page 11