In this issue
1 Investigative Report: BBS Reorganization
2 Op-Ed: Cloning
3 Trail Mix
4 The 1st Lab Rotation
5 Outta Here!
6 Dear B
7 The Ethical Graduate Student
8 Lifestyles of the Poor and Academic
9 The Buzz
10 The Great B-yond: Bumper Stickers

Hooray for the Holidays! Our Hannukah/Christmas/-Kwanzaa/New Years gift to you is this glorious issue. You’ll find everything you’ll need to make a smooth transition into 2003: the reorganization of the BBS in plainspeak (so you don’t look dumb in front of the interviewees), tips for choosing a mentor, holiday recipes, and shopping do’s and don’ts. Have a great break!

BBS Reorganization: Way more than rearranging initials

An Investigative Report
By M. (The Dirty Bird) Kundel

As many have undoubtedly heard, the BBS has reorganized substantially. At departmental happy hours and in bars I have overheard various rumors of change but did not necessarily know which were true. I knew that John Alvaro telling me that he would become emperor and that all graduate students would have to begin each morning with a “pledge to Lord Alvaro” seemed suspicious. I have since not only thankfully confirmed that not to be true but also found a set of significant but rational changes that maintain the integrative nature of the BBS.

At its inception, the BBS was designed with the idea that the different disciplines included in the BBS would be connected in a meaningful way. The current set of first year tracks coordinates with the departments which they represent in terms of class requirements. However, students may join labs in other departments. The BBS structure was set up to be experimental such that it could change over time. Current modifications are taking place because of certain observations after the first six years in the BBS. Faculty have noticed apparent confusion on the part of students on what exactly defined a track or program. When I applied, I recall being confused about what separated Cell Biology from MCDB. More importantly, there has been a general sense that some of the tracks and departments have been separated administratively but are clearly closely connected on a practical and scientific level. Students have tended to join their track-affiliated departments even if joining labs in other departments, which is certainly not negative. However, perhaps redefining tracks and requirements within tracks would allow for more student flexibility in terms of departmental as well as lab choice.

The first major BBS change is the addition of the track in Bioinformatics and Computational Biology, which has started this year. This track has been created in response to recent rapid advances in genomics and proteomics technologies and involves varied approaches ranging from traditional wet lab techniques to computer modeling and advanced statistical analysis. According to the 2002-3 BBS guidebook, the track encompasses opportunities in biological sciences as well as "computational sciences, bio-continued on page 3
There is an irrefutable argument for using therapeutic cloning, or somatic cell nuclear transfer, to treat human disease. But to convince Bush and other opponents of this research of its infallible status, I must ensure that no cloned human being can ever survive. I need to answer two questions with a demonstrably definitive "no:" (1) is this a person? and (2) is there a potential for a person?

The first question is a red herring. How does one define a person? For therapeutic cloning, the question must be answered in regard to a five-day old mass of cells. Previously, the rallying cry had focused on heartbeat, brain waves, movement, or autonomous viability. For the purposes of therapeutic cloning, none of these questions of life’s beginning need to answer the Siren’s call of controversy. Instead, it only requires an expansion of the understanding of our own cellular and chromosomal jurisdiction.

Therapeutic cloning has already been successfully applied to mice this year, even correcting a genetic defect in the mice to which it was applied (Rideout et al.). A mouse, whom I call Lacky (lacking the immune system) had a haploid nucleus from an epithelial cell. Then, haploid nucleus from it, replacing it with a diploid nucleus from an oocyte. The somatic cell nucleus, still by all definitions belonging to Lacky, then started to generate embryonic stem cells and the re-development of itself.

After five days, the inner cell mass (ICM) of that blastocyst, holding copies of Lacky’s genome trying to start over, was harvested to create an isogenic embryonic stem cell line. Then, those chromosomes, held in a stasis of differentiation, had a functional rag2 gene inserted by homologous recombination. Those repaired embryonic stem (ES) cells were used as donor cells for Lacky, giving him a functional allele and an adaptive immune system.

Now, where do things get tricky? By Bush’s decree, we cannot use the same procedure on humans. It would be illegal. Previously, many people were worried about ES cell lines’ use because they were discarded embryos from fertilization clinics. Pragmatists rallied and called it unethical NOT to use them. But dissenters claimed the first question, “Is this a person?” and said the embryo had a unique genome and the right to live – which expands the debate from the eddies of embryos to the waterfalls of abortion. However, the case with somatic cell nuclear transfer, as it is with Lacky and could be with a human, avoids almost all of that conflict. Almost, except for one last thing.

Of the clones made from this process, if implanted into a surrogate mother, 0.5% actually can survive to become adult mice. It is that number that still holds everyone back, and the questions of the blastocyst must be answered again: "Is this a person?" No. It has none of the characteristics of a person, nor of a unique identity. "Is there a potential for a person?" No, except for that 0.5% of the time. And it is here where a new paradigm of chromosomal tenure must be applied. I claim here is that it is the right of the chromosomes, indeed, it is the right of the organism to ensure its own survival by using whatever resources it has, including the use of this procedure.

Unsure? Here is a thought experiment. Imagine a woman (named Lucky) who develops an unusual internal organ that can sequester unused eggs from the ovaries and remove the haploid nucleus from it, replacing it with a diploid nucleus from an epithelial cell. Then, Lucky’s novel organ grows the oocyte for five days, just enough time to harvest the ICM and generate an ES cell line. While communicating with the nervous system, Lucky’s organ shuttles totipotent ES cells to places where the body has reported pain or failure, allowing tissue repair and regeneration.

If this all happened inside a woman, then no one would have any qualms with the process. It is easy to forget, once the process is ex vivo, that all of the materials needed for such a process already exist within every woman, and that our extension of nature through science could eventually evolve naturally. With the loaded questions of “personness,” the question is really about the potential for a human, not the presence of one. Remember that sperm donors have to sign away rights and that egg donors are reimbursed for their sales. It should be easy to see that our rights over our own happenstance continued on page 3
statistics and applied mathematics. This integrated focus brings participation from faculty in computer sciences, physics and mathematics. It is important to note that this program is a track, and students still join BBS departments by their second year. According to John Alvaro, the long range goal is the creation of a Bioinformatics and Computational Biology Department so that graduate students could actually receive degrees in Bioinformatics and Computational Biology.

The remaining BBS organizational changes take effect next year. The adjustments involve the current Biological Sciences, CBMP, and Genetics and Development tracks. First, the cell biology and molecular physiology tracks (CBMP) will no longer be combined. The Physiology Department will now be represented by a track entitled Physiology and Integrative Medical Biology. This track will train students in a diversified approach which seeks to explore how specific proteins and associated processes interact in the context of tissues and organisms. This program is designed to attract integrative biologists and to coordinate with clinical research faculty.

The other major change to take effect next year is the combination of MCDB, Cell Biology, and Genetics and Development. The new track is called Molecular Cell Biology, Genetics and Development. For those of us who would prefer names a little more garble-proof, MCGD, Supertrack and Megatrack will all be acceptable. This larger track was formed because of the already existing overlap between research interests within the three main departments. Hopefully this de-emphasis on specific departments will strengthen the graduate program because the track will be clearer and more attractive to graduate students.

Administratively, this track plans to admit approximately the same number of students as the three smaller tracks would have admitted before, so there is no immediate foreseeable change in BBS students roaming Yale. Once here, the students would randomly be split in half, and one group's departmental registrar will be on Science Hill while the other's will be at the medical school. Students will take a core set of classes - molecular cell biology, biochemistry, and genetic analysis - that will enable them to join any of the three departments at the end of the first year when joining an adviser's lab.

Some immediate concerns arise because of the size of this track. Could students get lost because of the size of the first year class? And would the size of this track create a BBS that is unbalanced, with one track being significantly larger than others? Clearly, we will have to wait to evaluate how the track functions to truly answer these questions. However, in terms of size, splitting the track between two registrars should not actually decrease the load for Anne Scott, the current MCDB registrar, and should be manageable for both registrars. In terms of balance within the BBS, this program will obviously be large but it is an obvious choice to connect programs that are already clearly so related. Also, it should not detract from other tracks which are clearly distinct in focus.

The remaining tracks - Immunology, Neuroscience, Pharmacology and Molecular Medicine, Microbiology, and MB&B - are unchanged which, more than anything, is good for anyone reading this article because it means that I cannot ramble on for page after page. It is important to evaluate this significant reorganization within the context of the initial idea of the BBS, that it is a continually changing program that will be evaluated and readjusted if necessary every year. In the final analysis, the changes seem rational, and we will see how they work in coming years.

haploid cells should hold, or even increase, for our deliberate diploid cells.

Finally, if you have any ownership of your own genome and body, then ethically this process should be available for humans to use. Utilitarian ethics point to the greatest good for the greatest number. Kantian ethics use the categorical imperative, which only applies to humans that have consciousness. Common sense says that if every genetic and phenotypic indication says that a cellular mass is still Lacky's, than it IS Lacky. Decency says that Lacky should have the right to make himself a little more lucky.

B magazine publishes Op-Ed pieces by staff members and guest writers in the BBS community. The views expressed herein are those of the author.
The 1st Rotation

BY A. SLEEPER

Those of you who went through the process know it. Those of you going through the process now have been told it a hundred times: choosing a lab is one of the most important decisions of your graduate career. We at B have decided to explore the lab selection process through a series of related articles. In this and upcoming editions, we will follow three students through their rotations and the culminating decision-making process. To allow for fully candid opinions, we have kept each student's identity anonymous and have named them A) Abbey, B) Bobbie, and C) Corby.

Abbey selected her first rotation because she was interested in the research going on in the lab. It is a small parasitology lab studying amoeba. She says that the project really pulled all of her interests together. Abbey works directly with the PI. She has been very pleased with her experience so far. The PI has served as an excellent mentor, going beyond Abbey's expectations. Her PI has helped Abbey not only with her science but also with adjusting to graduate student life. In fact, the overall lab environment has struck Abbey with its cohesive support. She says she has never felt stupid about asking anything in this environment and feels that all of the members are genuinely good people. Abbey isn’t sure, yet, whether she will return to this lab, but it seems that this positive experience has reinforced to her that she is comfortable with both a smaller lab environment and the immunology field. Her next rotation will most likely be in a small- or medium-sized immunology lab.

Bobbie chose her first rotation for both the project and the lab environment. The PI and the postdocs are enjoyable, and the proposed project seemed interesting and feasible in the few months allotted for a single rotation. The lab is very small, with an overarching theme of cancer therapy research. The lab conducts a lot of animal work, though Bobbie has been working only on molecular cloning and in vitro assays. She works mainly with a postdoc, though she feels that the PI is accessible to her. As her project has developed, Bobbie has encountered some unexpected challenges. Her project was designed to monitor an inserted protein in a cell line, but the project got held up when the vector chosen for gene delivery proved problematic. Her focus then shifted to creation of a functional vector to increase expression of the inserted protein. Bobbie is happy that she’s learned some molecular techniques (one of her original goals), yet she is frustrated that the project hasn’t proceeded as planned. In addition, Bobbie has realized that a very small lab might not be the right environment for her. She doubts that she will return to this lab, and plans to look for a somewhat larger lab, also in the general cancer research field.

Our third student, Corby, was looking for a lab that practiced a multi-disciplinary approach to science, a lab that employed a mix of chemical and biochemical assays. She spoke with professors when visiting Yale and maintained contact over the summer before beginning her graduate program, so Corby felt pretty comfortable starting off her rotations in her current lab. The lab is a molecular lab studying catalytic RNAs. She categorizes the lab as mid- to large-sized with about a dozen members. Corby works primarily with a 4th year graduate student but says that the PI is present often. The lab environment is both friendly and productive. And the project itself is good for a rotation; small enough that Corby feels she can make progress on it, yet important enough that Corby’s data could appear in one of the lab’s upcoming papers. Corby says that it’s too early to say whether she will return to this lab. She wants to compare this experience with others before making a decision, yet she thinks she could be happy returning to this lab. In her next rotation, she plans to head to a large, diverse lab in the chemistry department where she hopes she will experience another multidisciplinary project.

Our three students’ first lab experiences, though diverse, seem to have helped each of them clarify what they hope for in their thesis lab. In general, they all seem to feel settled into a particular field of research. In contrast, it is the subtler aspects of a lab – the group dynamics and the strategy of the project – that the students will be exploring in their next rotations. Join us in our upcoming edition when we revisit these students after their second rotation. We’ll see how their second labs compare to their first and how that will affect their final rotation selections.
OUTTA HERE!

Congratulations to everyone below who recently defended their dissertations.

Cell Biology
- Laurence Pelletier (Graham Warren) Biogenesis of the Golgi apparatus

Cellular & Molecular Physiology
- Anna Solowiej (Joseph Madri) Absence of PECAM-1 Attenuates Foreign-Body Inflammation due to Decreased Angiogenesis in and around the Implant

Genetics
- Alan Jonason (Joann Sweasy) Identification and Investigation of Proteins Associating with DNA Polymerase Beta in Meiosis
- Andrew Hudson (Lynn Cooley) Genetic and Molecular Analysis of the Drosophila Arp2/3 Complex

Interdepartmental Neuroscience Program
- Louis Marotti (Henrik Dohlman) Regulation of G Protein Signaling by Post-Translational Protein Modifications
- Michael Sutton (Tom Carew) Behavioral, Cellular, and Molecular Analysis of an Intermediate Phase of Memory for Sensitization in Aplysia
- Richard Hsu (Ron Duman) Role of the Melanocortin-4 Receptor in Mediating the Rewarding Effects of Cocaine
- Takatoshi Karasawa (Paul Lombroso) Frizzled-9 is Activated by Wnt-2 and Functions in Wnt/beta-Catenin Signaling
- T. Matthew Townsend (Martha Constantine-Paton) Developmental Regulation of NMDA Receptors

Immunology
- Jan Evans (Charles Janeway) Requirements for Suppression of Experimental Autoimmune Encephalomyelitis, and the Impact of MyD88 on Disease Induction
- Xin He (Charles Janeway) The Functional T Cell Receptor Repertoire: The Contribution from Dual TCR Cells and its Influence on the Type of Response
- Patricia Jorritsma (Kim Bottomly) Role of T cell Receptor-Induced Activation of Extracellular-Regulated Kinase in the Differentiation of Naïve CD4* T cells
- Jamie Repasky (David Schatz) TdT-Mediated Nucleotide Addition in V(D)J Recombination
- Maria Kontaridis (Anton Bennett) Function of the SH2 Domain-Containing Protein Tyrosine Phosphatase, SHP-2, in Myogenesis

Microbiology
- María Lara-Tejero (Jorge Galán) Molecular and Functional Characterization of Campylobacter jejuni Cytotolethal Distending Toxin
- Donald Jansen (Mark Gerstein) Computational Proteomics: Integrating Expression Data with Genome-wide Information
- Lan Zhang (Jennifer Doudna) Structural Studies of Ribozyme Catalysis and RNA-protein Interaction

Pharmacology
- Maria Kontaridis (Anton Bennett) Function of the SH2 Domain-Containing Protein Tyrosine Phosphatase, SHP-2, in Myogenesis
- Shilpa Patel (Priscilla Dannies) Expression of Mutant d32-71-hGH Growth Hormone Disrupts Secretory Function and is Toxic in Hey cells, a Human Ovarian Carcinoma Cell Line
- Aristidis Sachpatzidis (Elias Lolis) Identification of Two Allosteric Peptide Agonists of CXCR4 Using Genetic Selection in the Yeast Saccharomyces Cerevisiae B
Dear B

Got a problem? Got questions? Just ask B. (Advice is for entertainment purposes only, and you have only yourself to blame if you follow any of the stupid suggestions.)

Dear B,

My department put me in charge of happy hour. I already do everything else around here. Why can't they pick on someone else for a change? Get me out of this!

--Lacky No More

Dear Lacky,

If you can pull off the 1st happy hour such that you get to say the words below repeatedly and with well-rehearsed surprise, I'd say you'd be sitting pretty.

“Beer? I was supposed to bring beer?”

Dear B,

I'm a gung-ho 1st year student. The 5th year in my lab is SO jaded about Yale and grad school. Will this be me in 4 years?

--Bright-eyed in B-wing

Dear Bright,

No, this won't be you. You'll barely pass your qualifier, get scooped on your first AND second projects, have to move to Boise with your adviser when he doesn't get tenure, and drop out in your 4th year to join the circus. So you see, there's no need to worry about becoming a jaded 5th year student.

Dear B,

The holidays are here. How do I explain to relatives what I do for a living (molecular biology) without making them catatonic?

--Freak in the Family

Dear Freak,

Uncle Lenny likes football, right? So talk to him like you’re announcing Monday night's game. “You put the samples on dry ice and - BOOM - the DNA precipitates. When that happens you go to the centrifuge where those centrifugal forces pull on you and - BOOM - you get big 'ol DNA pellets...”

For added effect, diagram everything on the tablecloth in yellow magic marker.

The Ethical Graduate Student

Last September I joined with three other neuroscience students to undertake a Herculean task: to organize and implement a program in scientific ethics for first year neuroscience students. How were we going to do this? The NIH, which had politely informed the INP that the current ethical instruction was not up to par, offered no suggestions. We knew of a similar course offered by the MBB program, but had no real idea of how it worked.

We decided to meet once a month to discuss a topic and to bring in outside speakers, thus covering for our relative lack of knowledge. We narrowed the wide field of biomedical ethics to a short list, including authorship, human and animal research, intellectual property, mentor-student relationships, and recent topics in bioethics. We had lined up an impressive array of speakers, people who had direct experience with the kinds of sticky problems that come up in science all the time. In trying to find more reading material for the class, I found a book on ethics in science. It covered, chapter for chapter, every topic that we had picked. Perfect! The INP bought copies of this book and another, Life at the Bench. I did some extra research on ethical codes ascribed to by professional societies (sadly, only three such codes exist). We had cookies and drinks. We felt totally prepared for the class.

I don’t think that we could have been more unprepared. We were trying to base the class on the same kind of model that we had been exposed to: the students would read the material before class, the speakers would ask provocative questions, and deep and meaningful debate about the issue would follow. Well, all of this rests on three assumptions. One, the students will find the time to read the material you assigned them (I guess we forgot everything that goes on in the first year). Two, the speakers would understand, without being told, that they should ask provocative questions (actually, several of our speakers were great and asked perfect questions). And three, enough students will actually have to read the material so that they could write a coherent paper, and it would force the students to think about the topic, even if they didn’t participate in the deep philosophical discussion.

The second assumption was more difficult for us. We simply told the outside experts that we wanted a session that was more discussion than lecture, but we ended up with no lecture and very little discussion. Each speaker introduced himself or herself and gave some background information, and then the rest of the class fell flat. In response, we now meet before the class and come up with a list of “salvation” questions if the deep discussion seems to be lagging. In fact, the class that generated the most conversation was also the one for which we spent a good deal of time researching and preparing. So for this year, we’ve committed to more preparation and to coming up with thought-provoking questions for the speakers. We hope it helps the speakers and makes them more active participants.

I think that we earned a lot from our first year in organizing the venture, namely that we need to put more effort into the class. I think that we owe it to the students. We are all being exposed to ethical problems in science every day, whether we realize it or not. At least with a good class, we can give the students a framework to approach problems. And maybe next year one of them will want to plan the class.

BY REBECCA MEIER KLEIN

Future B Topics

Been to an interesting used bookstore in CT? Tell us all about it! Send an email to nathanael.mccurley@yale.edu.
Lifestyles of the Poor and Academic

(Also see John Rinn’s “Trail Mix” on page 4)

Holiday Help

By B. Staff

Looking for a little help in the kitchen this holiday season? Our expert cooking staff have combed their extensive cooking databases for their favorite recipes, which we’ve reproduced below. Try them out, and don’t forget to invite us over for dinner.

Herbed Carrot Cream Soup with Baby Peas

(from the kitchen of Katherine Carter)

Ingredients:
- 1/2 cup butter
- 1 lb shredded carrots
- 8 green onions (finely chopped)
- 6 shallots
- 1 potato, sliced
- 1 clove garlic
- 1/4 tsp tarragon
- 1/4 tsp chervil (parsley will also work)
- 1/4 tsp marjoram
- A pinch of thyme
- 2 quarts chicken stock
- 1 cup heavy cream
- 10 oz baby peas (thawed, if frozen)
- Salt and pepper to taste

Saute butter, carrots, onions, potato, shallots, and spices until onions are soft. Add mixture to chicken stock and continue to cook until vegetables are tender. Puree until smooth. Add cream and peas just prior to serving, and sprinkle with salt and pepper to taste.

Makes 10 to 12 servings

Herbed Bread Stuffing

(from the kitchen of David Peaper; adapted from Gourmet magazine)

Active time: 35 min; start to finish: 1 hr.

Ingredients:
- 11/2 cups chicken broth
- 1/2 cup water
- Preheat oven to 325°F.
- Toast bread in a large shallow baking pan in middle of oven until just dry, 25 to 30 minutes.
- Cook onions, celery, and herbs in butter in a large heavy skillet over moderately low heat, stirring occasionally, until celery is softened, about 10 minutes. Stir together bread, vegetables, broth, water, and salt and pepper to taste, then cool completely, uncovered. You can make stuffing 1 day ahead and keep it covered and chilled.

Makes 10 to 12 servings

Shopping Tips

By B. Hansky

You may not have realized this, but Thanksgiving came late this year. And while that may have come as a welcome few extra days in which to run one last experiment, or to prolong the inevitable in-law wars and cranberry sauce stains, what it really means is that we have fewer days than last year to get all your holiday shopping done. What are we to do?

First of all, don’t panic. Before you throw your hands up in despair and run off to order Amazon gift cards for everyone on your list, finish reading this article. Fortunately for you, New Haven lies in a veritable cornucopia (dare I say winter wonderland?) of establishments that will gladly take your money in exchange for a scarf, DVD, book, espresso machine, or any other item you deem worthy of your closest friends and family: shopping malls. Below is a guide to a few of my favorites (and absolute least favorite), as well as some tips for a pleasant shopping experience.

Rule number 1: Stay FAR, FAR AWAY from indoor malls. If indoor malls tend to bring out the claustrophobic in you, you can find many of the same stores at West Farms (including J Crew, Williams-Sonoma, and Coach) on Main Street in Westport, also about half an hour away. Westport is a quaint Connecticut town, and if you go out the back door of Pottery Barn, you’ll find yourself looking out over a picturesque marshy river, where you can stroll with your purchases, and perhaps a hot caramel cider from Starbucks, which is next door.

Is all of this a little too hoity-toity for you? Then hit the outlets! Clinton Crossing (again, about half an hour away—exit 63 on 95) is one of my favorite things about living in New Haven, and I’m only half-kidding. Everything is on sale here every day, and they have lots of good stores for gifts, like Crate & Barrel, Gap, and Saks Fifth Avenue. Plus, your lucky recipients don’t need to know that the Kenneth Cole Bag or Donna Karan sweater you got them was 85% off. Let them think you spent a fortune.

Lastly, I of course have to give a plug to NYC. Christmas in New York is one of the greatest feelings in the world, and this is coming from someone about to celebrate her 27th Hannukah. The city has all this positive energy you don’t see year-round, and it just makes everyone feel warm and fuzzy. If you take the train to Grand Central, you can walk up Fifth Ave and look at the window displays in Bloomingdale’s and Saks, pay a visit to FAO Schwarz, and then turn towards Rockefeller Center to see the tree (which is really just breathtaking) and watch the ice skaters. If you were really good at saving that stipend this year, maybe you could actually go into one of the stores and buy something.

Finally, a few tips. If you can, try to avoid shopping when everyone else does, especially Saturday afternoon. It won’t be pleasant. Also, wear comfortable shoes, you’ll be walking a lot. And if you find this article so helpful that you feel compelled to include me on your shopping list, there’s this really beautiful tweed coat in J Crew that I’ve had my eye on. I’m a size 8. B
The BUZZ

The Yale Belly Dancers perform at Gryphon’s Pub on Wed. nights at 10:00 pm. Belly dancing is free but there is a cover charge for the bar. 1-4 dancers perform for 15-20 minutes total. For info, go to: http://www.yale.edu/bellydance.

Congratulations to Brian Ramos, 4th yr Neurobiology, and his wife on the birth of Grace Delphine Ramos, 7lbs 11oz, on Nov. 17 at 8 PM.

Congratulations to Mike Kraus, 4th yr Neurobiology, and his wife on the birth of Lucy Genevieve Kraus, 8 lbs 15.5 oz, on Oct. 26 at 12:51 PM.

Congratulations to Ray Pagliarini, 5th yr Genetics, and his wife, Kathy, who were married in October.

Congratulations also to Betsy Malle, 4th yr MCDB, who recently married Glenn Schulman, MPH ’04.

Congratulations to Nate Sherer, 4th yr Microbiology, who recently married Jolynne Roorda.

Kudos to John Rinn, Martin Schmeing, and Dan Klein of MB&B on running their first marathon!

Get Published! Contribute fiction, non-fiction, poetry, art, photography, and music to Palimpsest, Yale’s new Literary Arts Magazine for the graduate and professional community. The aim of the magazine is to create a high quality publication showcasing the best works of art and writing. For more info, see: www.yale.edu/graduateschool/mcdougal/Magazine.pdf. Send submissions to: david.grimm@yale.edu, elisabeth.enebach@yale.edu, mcdougal.center@yale.edu (*magazine submission* in the subject line). Early Submission Deadline (better chance of acceptance): Dec. 17. Final Deadline: Jan. 28.

Part of the great byond - a showcase of student creativity

Wow! We had over 85 submissions, all of which were great! We dare you to put some of these on your car! Congratulations to the 1st year students, who swept the top spots.

First Place
Amanda Solemn, MB&B Track
I brake at UAG

Second Place
Jessica Babè, MB&B Track
Stop Apoptosis

Third Place
Maya Davis, Pharm/Mol Med Track
My other car is the BioMed

Honoroble Mention
Kyle Friend, 2nd year MB&B
Polymerases do it Longer

Other Notable Entries (in random order)

- In the summer this is an autoclave, Amanda Solemn, MB&B Track
- Free Gibbs Energy!, Amanda Solemn
- 50S + 30S = 70S, Kendra Frederick, MB&B Track
- Proud Parent of an HHMI Investigator, Kendra Frederick
- My Overhauser’s Bigger Than Yours, Kendra Frederick
- Mean PI’s Suck, Amy Chow, 5th year Immunobiology
- Excretion Happens, John Swartley, Office of Cooperative Research
- If you can read this you’ve got a scanning electron microscope, John Swartley
- Phagocytize my dust!, John Swartley
- I’d rather be mFISHing, John Swartley
- Don’t blame me. I voted for human cloning, Jason Walker, Genetics & Development Track
- Entropy Happens!, Jason Walker
- Trust Me. I’m a Biologist, Jason Walker
- My other car is GFP-tagged, Nil Addy, Neuroscience Track and Keith Gipson, MD/PhD Program
- If You’re Reading This, Get Back to the Lab!, Nil Addy and Keith Gipson
- Warning: Driver has Inducible Expression of Road Rage, Nil Addy and Keith Gipson
- PI in Trunk - You could be next, Nil Addy and Keith Gipson
- Ask me about Alternative Splicing, Nil Addy and Keith Gipson
- My Knockout Mouse is Dumber than Yours, Nil Addy and Keith Gipson
- Rotation Student On Board!, Wai-Tsang Chan, 2nd year Microbiology
- Differential characters are inherited independently -- Mendel
- Your seed dies with you, monk -- the peas, Kyle Friend, 2nd year MB&B
- My other lab’s HHMI, Kyle Friend
- Rattus Norvegicus - The other white meat, Maya Davis, Pharm/Mol Med Track
- Get any closer and I’ll Trizol your *ss, Maya Davis
- If this shaker’s a-rockin, don’t come a’knockin, Michael Seringhaus, 2nd year MB&B
- My student was pupil of the month at Yale Hazmat Cleanup class, Michael Seringhaus
- Who are these students and why are they calling me professor?, Michael Seringhaus
- Med Students Suck, Shanta Whitaker, Microbiology Track
- Ask me about my thesis project, Nadya Morales, Microbiology Track
- Adopt a grad student, Nadya Morales
- If you can read this, I’m not in Lab. Hal, Lara Ely, 4th year Microbiology
- Go ahead, cut me off. I’ve been looking for an excuse to unleash my mutant virus, Lara Ely
- How’s my Action Potential? Comments? Call 1-800-SPiKEME, Reba Rabenstein, 2nd year INP
- I brake for mutants!, Jessica Babè, MB&B Track
- Degradation Happens, Jessica Babè
- Warning, I go from 0 to cytotoxic in 3.5 picoseconds, Jessica Babè
- Radioactive grad student on board, Jessica Babè
- Mean Faculty Suck, Anonymous

The B magazine “Bumper Sticker” Contest

Your Advertisement Here
Reach over 800 Yale students, post-docs, faculty, and administrators.